

A cost-effective solution for spreading, dewrinkling, tracking, non-slip and air elimination

Various elastomers

Precision machined with angled, outward spiraling grooves across the roll surface

These anti-wrinkle rolls can influence your web in various ways, including stretching it, spreading it or allowing the web to lay flat and simply not induce wrinkles in the first place.

Through a partnership with Valley Roller, these idlers are covered with a rubber elastomer and are precision machined with angled, outward spiraling grooves across the roll surface. There are different elastomers available for use, each with different physical properties such as solvent resistance, heat resistance and hardness. In addition, various groove patterns are available to meet your specific application needs. Our Customer Support Specialists can help you determine which elastomer and groove pattern is best for your specific application.

RECOMMENDED WEBSPREADER GROOVE TYPES

Groove Type	Paper	Film		
Single Groove (1) LH (1) RH	≥ .003	≥ .007		
Double Groove (2) LH (2) RH	≤ .003	≤ .007		
Triple Groove (3) LH (3) RH	≤ .0015	≤ .002		
Quad-X (4) LH (4) RH	≤ .001	< .001		

Common Applications

Quad X

- Ideal for thin film and paper
- This idler is machined with quadgrooves that run progressively deeper as they travel toward each end of the roll

Silicone Covered

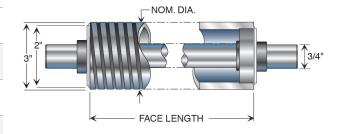
- Built to elevated temperatures
- Silicone rubber coverings are nonmarking and offer excellent web release properties

PVC Nitrile

- Economical and non-marking, capable of withstanding temperatures up to 250° F
- Offers superior abrasion resistance

Ordering is easy with Webex's simple model nomenclature.

GROOVED RUBBER-COVERED MODEL

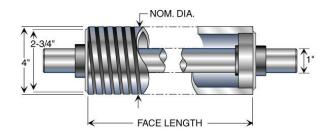

GR-300-075

2.0 inch diameter aluminum core

Rubber covered to 3.0 inch diameter

Low-friction bearings installed for a 0.75 inch diameter dead shaft

Generally available in Face Lengths up to 50 inches

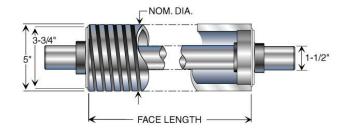

GR-400-100

2.75 inch diameter aluminum core

Rubber covered to 4.0 inch diameter

Low-friction bearings installed for a 1.0 inch diameter dead shaft

Generally available in Face Lengths up to 80 inches

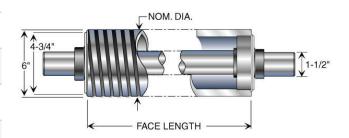

GR-500-150

3.75 inch diameter aluminum core

Rubber covered to 5.0 inch diameter

Low-friction bearings installed for a 1.50 inch diameter dead shaft

Generally available in Face Lengths up to 96 inches

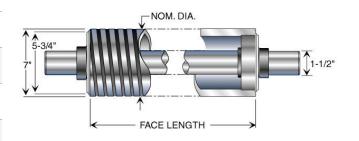

GR-600-150

4.75 inch diameter aluminum core

Rubber covered to 6.0 inch diameter

Low-friction bearings installed for a 1.50 inch diameter dead shaft

Generally available in Face Lengths up to 110 inches


GR-700-150

5.75 inch diameter aluminum core

Rubber covered to 7.0 inch diameter

Low-friction bearings installed for a 1.50 inch diameter dead shaft

Generally available in Face Lengths up to 120 inches

ELASTOMER SELECTION GUIDE: POLYMER PROPERTIES

RELATIVE RATING Excellent Above Average Average Fair Poor	NEOPRENE	NITRILE	CARBOXYLATED NITRILE	POLYURETHANE	SILICONE (STANDARD)	EPDM	HYPALON	VITON
Hardness Range	20-95	20-100	45-95	40-95	30-90	25-95	30-90	55-90
Tensile Strength	•	•			\bigcirc	O	O	O
Modulus	•	•			•	•	•	•
Elongation at Break		•	•	0	•	•	•	•
Tear Strength	0	•			$\frac{0}{0}$	•	•	•
Cut Resistance	•	•			0	•	•	•
Resistance to Compression Set	•	•	\odot			•	•	O
Resistance to Compression Set Resistance to Permanent Set	•	0	•	•		•	•	O
					•			
Resilience	•	<u></u>	0	•		O	•	•
Resilience to Heat Build-up		O	0			O	O	
Resistance to Abrasion	•	0			0	•	•	O
Ozone Resistance	<u> </u>	0	0	•				
Hydrolytic Stability		0	0	O		0	•	•
Dielectric Strength	<u></u>	0	0	•		0	•	•
Release Characteristics	\bigcirc	•	0	•		•	•	•
Maximum Service Temperature (° F)	250	250	275	212	500	350	300	500
Acids (Mineral) Nitric, Sulfuric Hydrochloric, Phosphoric (Organic) Acetic, Boric	•	0	0	0	•	•	•	•
<u>Caustics</u> Sodium Hydroxide, Calcium Hydroxide	•	•	•	0	•	•	•	•
Aliphatic Hydrocarbons Kerosene, Gasoline, Hexane, Naphtha, Mineral Spirits, Most Offset/Letterpress Printing Inks, Many lubricants and greases	•	•	•	•	0	•	•	•
<u>Aromatic Hydrocarbons</u> Toluol or Toluene, Xylol or Xylene	0	•	•	0	•	0	0	
<u>Chlorinated Hydrocarbons</u> Methylene Chloride, 1, 1, 1- Trichloroethylene, Perchloroethylene	•	•	•	0	0	•	•	•
Esters Ethyl Acetate, Dioctyl Phthalate, Tricresyl, Phosphate	•	•	•	0	•	•	•	•
<u>Alcohols</u> Methanol, Ethanol, Isopropyl Alcohol	•	•	•	•	•	•	•	•
<u>Water</u>	lacksquare	•	lacksquare	igoredown	•		•	•
Glycols	•		•	•	•		•	•
Ethylene Glycol, Glycerine	•		9		•		•	
<u>Ketones</u> Methyl Ethyl Ketone (MEK), Methyl Isobutyl Ketone	•	0	0	0	•	•	•	•

How to specify the right elastomer

Use this elastomer chart to help determine which rubber compound is best suited to your particular situation. If in doubt, call us. We'll help you determine the best possible covering based on the web handling parameters you have to share with us.

Standard Grooved Idler Rolls use the following elastomers:

Silicone PVC-Nitrile

Other (nonstandard) elastomers available:

Neoprene Carboxylated Nitrile Polyurethane EPDM Hypalon Viton

How to specify the right grooved rubber roll

This literature presents four different groove configurations for the standard rubber-covered idlers. Other options are also available, including additional groove variations and non-groove designs.

To specify the best possible groove or rubber roll design, call us. Chances are we've already designed a rubber-covered roll for an application similar to yours.

ELASTOMER SELECTION GUIDE

Any Webex roll can be Rubber-Covered to meet process needs. The appropriate selection of a rubber cover is important to the success of many process applications. The following is a summary guide to a few of the most popular choices of rubber elastomers used in the web converting industry.

NEOPRENE: Neoprene is considered a good choice for general purpose applications. It has good mechanical properties, good chemical resistance and high resilience. Neoprene is a workhorse in the industry. It is used on nip rolls, pull rolls, feed rolls and in flexo and gravure printing.

NITRILE: Also known as NBR or Buna-N, Nitrile is the most commonly used elastomer in the industry. It has good resistance to oils, chemicals and water. Nitrileis also a workhorse covering with applications as nip rolls, pull rolls and rolls in printing applications.

CARBOXILATED NITRILE: A modified Nitrile rubber. possessing most of the properties of Nitrile along with outstanding abrasion resistance and other physical characteristics, including tensile strength.

NITRILE/PVC BLENDS: Very popular in the web converting industry. The addition of PVC enhances the physical properties, abrasion resistance, strength, chemical and ozone resistance of Nitrile.

POLYURETHANE: Urethane rubber is available in two basic chemical types, polyester and polyether. Polyurethane is a tough elastomer with good chemical and solvent resistance while polyethers work better in applications that come in contact with water. Urethane is typically used in applications where toughness, wear resistance and cut resistance are desired. Urethane generally has high-friction characteristics making it a favorite for pull rolls.

SILICONE: Silicone rubber is known for two main. attributes, high temperature (500° F) capability and improved release characteristics. Silicone is a more expensive covering but along with heat resistance and release it has good chemical resistance and excellent ozone resistance. Silicone has generally weak physical characteristics but is widely applied in situations where its temperature and release characteristics are needed.

EPDM: Sometimes called EPT, EPDM consists mostly of Ethylene and Propylene. It has excellent ozone resistance and chemical resistance, especially with polar solvents such as keytones. EPDM is also heat resistant to 350° F. It is typically used where its chemical and temperature capabilities are required such as coating applications.

HYPALON: Hypalon has good physical characteristics, good chemical resistance, excellent ozone resistance and good temperature (350° F) capability. Hypalon is ideal for many roller applications and is a favorite as a covering for nip rolls.

VITON: Viton is known for its excellent chemical resistance and high temperature (500° F) capability. Viton is very expensive so its applications are limited to extreme cases where other compounds fail and the high price can be justified.

NORTH, CENTRAL AND SOUTH AMERICA

Tel +1 920 729 6666 Fax +1 920 725 9992 sales@webexinc.com www.maxcessintl.com

EUROPE, MIDDLE EAST AND AFRICA

Tel +49 6195 7002 0 Fax +49.6195.7002.933 sales@maxcess.eu www.maxcess.eu

CHINA

Tel +86.756.881.9398 Fax +86 756 881 9393 info@maxcessintl.com.cn www.maxcessintl.com.cn

INDIA

Tel +91.22.27602633 Fax +91 22 27602634 india@maxcessintl.com www.maxcess.in

KOREA, TAIWAN AND SE ASIA

asia@maxcessintl.com www.maxcess.asia

